Evaluation of Effects of the Kingston Ash Release on Benthic Invertebrate Communities

Tyler Baker¹, John Smith²

¹ Tennessee Valley Authority; ² Oak Ridge National Laboratory

Principle Study Question?

Do levels of ash-related constituents — particularly arsenic and selenium — within sediments in the Emory and Clinch Rivers pose sufficient risk to ecological receptors?

Methods

- Sampled up to 18 sites each year
- Ten equally-spaced
 Ponar grabs across
 width of the reservoir
 (i.e., transects)
- Grab samples washed through a 0.6 mm mesh screen and remaining content preserved
- Each sample analyzed in the laboratory for taxonomic identification and enumeration of benthic invertebrates.

Methods

Substrate Determination

- Recorded water depth and substrate composition
- Visual assessment of substrate type and presence of coal fly ash.

Co-located sediment samples collected in 2011 and 2012

 Analyzed for concentrations of target analytes, grain size distribution, and %Ash

Population Density and Taxa Richness

Benthic Community 2011 and 2012

Mean Population Density

Mean Taxa Richness

"Reference" Sites

Summary of Benthic Invertebrate Composition

Mean Density of Dominant Taxa Groups 2011 - 2012

Cross-sectional Area of Sampling Sites

Composition of Substrate in Co-located Sediment Samples

Composition of Ash Co-located Sediment Samples, 2012

Downstream ← Upstream

Relationship of %Ash to As and Se Concentrations

% Ash prediction of As concentrations:

 r^2 =0.7114, p < 0.0001

% Ash prediction of Se concentrations:

 r^2 =0.1966, p < 0.0001

Comparison of Physical/Chemical and Benthic Community Data

- Stepwise Regression
- Spearman Rank Correlation
- Ash related impacts on the invertebrate community appear limited, except for ERM 2.6.
- Several invertebrate measures (e.g. total density, taxa richness, chironomid density) had a significant inverse relationship with %Ash.

Kingston Ash Recovery

Benthic Community Waypoints

Benthic Community Waypoints

Phase 1 Dredge Area

Photography Date: 04/11/2010

Map Compiled 07/27/2011

Tennessee Valley Authority Geographic Information & Engineering

Population Density, Substrate, and Water Depth Emory River Mile 2.6, December 2010

Summary

- Benthic invertebrates in the Emory River in the immediate area of the spill were undoubtedly impacted by the ash deposits and later dredging operations.
- Four years of results suggest limited ash-related impacts.
- Community composition typical of Tennessee River reservoirs with dominance of chironomids, oligochaetes, bivalves, and Hexagenia.
- While some differences may be attributed to residual ash in the river system, the majority of variation was due to substrate and habitat heterogeneity.

